x+(x^2)=380

Simple and best practice solution for x+(x^2)=380 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x^2)=380 equation:



x+(x^2)=380
We move all terms to the left:
x+(x^2)-(380)=0
determiningTheFunctionDomain x^2+x-380=0
a = 1; b = 1; c = -380;
Δ = b2-4ac
Δ = 12-4·1·(-380)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1521}=39$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-39}{2*1}=\frac{-40}{2} =-20 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+39}{2*1}=\frac{38}{2} =19 $

See similar equations:

| 19/2÷23/15=x/30 | | -6c=-7c+1 | | -10-4p=2 | | 7-x=2-(x+5) | | x/7+6=-4 | | 2y-8=15 | | 7+3(x+4)-10=-45 | | |x-7|=12 | | 3^x+2=5^x | | 2/3x=3/56 | | 64*16^-x-3=16^3x | | 5^3n+2=125 | | 8(9-36x^2)=(8)0 | | (1/4)^-3n=64 | | (1/36)^r+3=1/6 | | 4x-(4/7)=(2/3x)+(5/8) | | 4x-30=56+2(x) | | (1/9)^3m/243^m=1/243 | | 4x-(4/7)=(2/3)x+(5/8) | | 3^1-2k*243=3^3 | | 9^-3n=27^3n-1 | | −8(z+4)=−7(z+−4)+−3−8(z+4)=−7(z+−4)+−3 | | 31.5-1.2x-0.06x^2=0 | | x+(5/15)-(6/15)=0 | | 3^x+2=3^2x+2 | | .4p=p-1.25 | | 4^-3b=4^2b | | 216^2m=1/36 | | x+(1/3)=(2/5) | | 16^-3b=64^-2b-2 | | (1/243)^2b=81 | | 625^-2b=125^-b |

Equations solver categories